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What is Experimental Design ?
Find sets of experiments that provide most information about
targeted parameters.
Where and when to make measurements ?
Which variables to interrogate ?
What experimental conditions are to be choosen ?

Example
−D∆u + V · ∇u + γu(1− u) = 0.

A bad experiment would be insensitive to errors in the inferred
value of diffusivity.
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Goals
Maximize the value of data for inference and prediction
Explore impact of observables on information gain
Conditions under which to repeat experiments

Tools
Bayesian description of data assimilation
Information theoretic measure of information gain
Computational Model: Physics or Data based or both
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Bayes’ rule

p(θ | y,d) = p(y|θ,d)p(θ)
p(y|d)

θ: Parameter to be inferred
d: Experimental conditions
y: Data obtained from realization of d

Information gain
Measure difference between two densities
Kullback-Leibler (KL) divergence:

DKL(A||B) =
∞∫
−∞

pA(x)log
(

pA(x)
pB(x)

)
dx

Relative entropy, represents information gain

Computational Experimental Design March 10, 2022 5 / 20



Bayes’ rule

p(θ | y,d) = p(y|θ,d)p(θ)
p(y|d)

θ: Parameter to be inferred
d: Experimental conditions
y: Data obtained from realization of d

Information gain
Measure difference between two densities
Kullback-Leibler (KL) divergence:

DKL(A||B) =
∞∫
−∞

pA(x)log
(

pA(x)
pB(x)

)
dx

Relative entropy, represents information gain

Computational Experimental Design March 10, 2022 5 / 20



Utility Function
KL divergence from prior to posterior in current context
Function of conditions d and realizations y

u(d, y) = DKL(p(θ | y,d)||p(θ)) =
∞∫
−∞

p(θ|y,d)log(p(θ|y,d)
p(θ) ) dθ

Expected Utility
Maximize utility function over all possible data→ Expected
information gain at conditions d

U(d) =
∫
Y

(∫
Θ

(log(p(y|θ,d)− log(p(y|d))p(θ) dθ
)

p(y|θ,d)dy.

Optimization problem: Find d∗ = arg max U(d)
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What makes obtaining d∗ hard ?
Design space can be massive.
Likelihood p(y|θ,d) can be expensive or infeasible to evaluate.
Prior p(θ) can be difficult to specify and sample from.

Every challenge also an opportunity (to do math).
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Combustion Kinetics[2]
Use shock tube experiment to interrogate hydrogen-oxygen
reaction
Shock wave spikes temperature and pressure and triggers
reaction.

Mathematical Model of Reaction(s)
Conservation of energy and mass
Constitutive relation: kf ,m = AmTbmexp(

−Ea,m
RuT )

Want to infer parameters A1 and Ea,3
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Design variables
Initial temperature T0

Fuel-oxidizer equivalence ratio φ
What temperature should the experiment be performed at, and
what should be the relative amount of fuel and oxidizer ?
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Figure: Utility contours with all observables
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Figure: A(975,0.5), B(925,0.85), C(1025,0.85)
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Ocean Turbulent Mixing Viscosity
Governing equation:
∂φ
∂t +∇ · (uφ+ u∗φ) = ∇ · κσ∇σφ+

∂(κz(Dkr)
∂φ
∂z )

∂z [1].
φ tracer, u from hydrodynamics solver.
Parameter of interest: Turbulent mixing viscosity: Dkr(x)

Sources of Complexity
Infinite dimensional parameter, expensive forward evaluations.
Need to avoid unphysical realizations of Dkr which lead to sample
rejections.
Expert knowledge to inform prior and reduce computational
burden.
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Modeling Dkr

Dkr modeled as a Gaussian process.
Need to specify the covariance for this process, covDkr (x, y).

Covariance Modeling
For a spatially distributed parameter, we need to specify
covariance kernels.
Typical kernels: stationary, isotropic, smooth and periodic
covDkr non-stationary and anisotropic.
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General Covariance Kernel Generation [5]
General second order stochastic PDE:
(κ(x)−∆)(τ(x)u(x)) =W(x)

Generalized Matern kernel:
cov(u(0), u(x)) = σ(τ)2

2ν−1Γ(ν)
(κ‖x‖)ν Kν (κ‖x‖)

Matern Kernel Parameters
κ(x): Inverse of the pointwise correlation length.
τ(x): Inverse of the pointwise marginal variance.
Prescribe models for κ and τ based on simulation variables,
parameters.
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Software Implementation
R SPDE solver package INLA [4].
Specify geometry, creates Finite Element mesh, generates
samples with prescribed covariance structure.

Verifying realizations
Non physical realizations need to be rejected.
All samples need to exhibit mixed layer produced by the
interaction of the Arctic ocean’s salinity with the hydrodynamics.
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SPDE parameter specification
Expert input: κ(x) and τ(x) depend only bathymetry gradient.
κ(x) = κmecκ‖∇b(x)‖, τ(x) = τmecτ‖∇b(x)‖

Figure: Clockwise: Plots of the Land Mask, bathymetry gradient norm ‖∇x‖,
correlation length parameter κ(x) and marginal variance parameter τ(x).
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Conclusions and Future Work
Bayesian experimental design powerful quantitative tool for OED,
especially in the presence of nonlinearities.

Computational burden can be alleviated by incorporating expert
knowledge, computational algorithms and exploiting parallelism.
Framework can be extended to sequential experiments using
dynamic programming [3].
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